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1. Let I, I, I3, 14, I5, . .. be an infinite sequence of closed intervals in R,
where each interval [, is given by

I, = [an,by) ={z €R:a, <z <b,}

for some real numbers a, and b, satisying a, < b,. Suppose that
I, C I, for each natural number n and that b, —a,, — 0 as n — 4o00.
Prove that there exists exactly one real number ¢ with the property that
¢ belongs to I,, for each natural number n. [Hint: use the theorem on
the convergence of bounded monotonic sequences. |

2. Determine which of the following functions are homeomorphisms:—

(a) the function ¢: R — R defined by c(t) = ¢3;
the function g: 4 — elined by ¢g(z,y) = (x,y”), where =
b) the function g: H — H defined b %), where H
{(z,y) eR?:y > 0};
(c) the function h:R? — R? defined by h(z,y) = (z, y?);
(d) the function p: R? — R? defined by p(z,y) = (z, z* + 3y);
(e) the function ¢: D1 — Dy defined by ¢(x,y) = (e ¥ cosx, e ¥ sinz),
where
D = {(z,y) eR?*:y>0and 0 <z < 7},
Dy, = {(z,y) €R?:y>0and 2” +9y° < 1}.

3. Consider the following subsets of R®. Determine which are open and
which are closed in R3. [Fully justify your answers.]

( )

(z,y,2) ER®:a? + ¢ + 2% <4 and 2 < 1},
( ) eR*: 2% +y? > Tand 2 <0},
(z,y,2) €R¥: 2? +y> < Tor z > 2},
(r,y,2) €eR?: 2> 0and 2% — y? — 22 = 1},
(r,y,2) ER?: x>0 and y? + 22 = 1/z}.

4. Let D = {(z,y) € R* : y < f(x)}, where f:R — R is continuous.
Prove that D is open in R



5. Let X be a subset of R”, let x be a point of X, and let p be a point of
R™ that does not belong to X. Let S be the set of all non-negative real
numbers ¢ with the property that (1 —7)x + 7p € X for all 7 € [0, ¢]
(i.e., the line segment joining the point x to the point (1 — ¢)x + tp is
contained within the set X). Let s =sup S, and let y = (1 — s)x + sp.

(a) Explain why 0 < s < 1.

(b) Show that if the set X is closed in R™ then y € X.

(c) Show that if the set X is open in R™ then y € R"\ X.
)

(d) Using (a) and (b), show that the only subsets of R" that are both
open and closed in R™ are the empty set () and R" itself.

6. Let di: R? x R? — R and dy: R? x R? — R be be the functions defined
by

d((2,y), (u,0)) = | —ul+]y =],
da((2,y), (u,v)) = max(|z —ul, [y —v|)

for all real numbers z, y, u and v. Verify that the metric space axioms
are satisfied by the distance functions d; and dy, on R%. What are the
shapes of the open balls in R? defined using these distance functions.

7. Let X be a non-empty set. Let d: X x X — R be defined so that
d(z,y) =1if z # y and d(z,y) = 0 if z = y. Verify that the distance
function d on X satisfies the metric space axioms.

8. Let X be a metric space with distance function d, and let A be a
non-empty subset of X. Let f: X — R be the function defined by
f(z) = inf{d(z,a) : a € A} (i.e., f(x) is the largest real number with
the property that f(z) < d(z,a) for all @ € A). Use the Triangle
Inequality to prove that f(z) < f(y) + d(z,y) for all z,y € X, and
hence show that |f(z) — f(y)| < d(x,y). (Note that this implies that
the function f: X — R is continuous.) Prove that A is closed in X if
and only if A = {x € X : f(x) = 0}.



D.
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. The Zariski topology on the real numbers R is the topology whose open

sets are the empty set, the set R itself and those subsets of R whose
complements are finite. [Note added in 2016: this topology is also
known as the cofinite topology on R.]

(a) Prove that any polynomial function from R to itself is continuous
with respect to the Zariski topology in R.

(b) Give an example of a function from R to itself which is continuous
with respect to the usual topology on R but is not continuous with
respect to the Zariski topology on R.

(a) Let f: X — Y be a function from a topological space X to a
topological space Y, and let A and B be subsets of X for which
X = AUB. Suppose that the restrictions f|A and f|B of f to the
sets A and B are continuous. Is f: X — Y necessarily continuous
on X7 [Give proof or counterexample.|

(b) Let f: X — Y be a function from a topological space X to a topo-
logical space Y, and let F be a (not necessarily finite) collection of
closed subsets of X whose union is the whole of X. Suppose that
the restriction f|A of f to A is continuous for all closed sets A
in the collection F. Is f: X — Y necessarily continuous on X7
[Give proof or counterexample.]

Let f: X — Y be a function from a topological space X to a topological
space Y, and let U be a collection of open subsets of X whose union
is the whole of X. Suppose that the restriction f|W of f to W is
continuous for all open sets W in the collection /. Prove that f: X — Y
is continuous on X.

. Let X be a topological space, let A be a subset of X, and let B be

the complement X \ A of A in X. Prove that the interior of B is the
complement of the closure of A.

(a) Let X and Y be metric spaces, and let d;: X xY — R and d,: X X
Y — R be the functions defined by

d((2,y), (w,v)) = d(z,u) +d(y,v),
d2<<x>y)v(u>v)) = max(d(x,u),d(y,v))



10.

11.

12.

for all real numbers x, y, u and v. Verify that the metric space
axioms are satisfied by the distance functions d; and dy on X x Y.

(b) Show that the topology on X X Y generated by the distance func-
tions d; and dy defined in (a) is the product topology on X x Y.

Let S be the unit circle in R?. Prove that the map 7:[0,1] x [0,1] —
St x [0, 1] that sends (¢, 7) to ((cos2nt,sin 27t), 7) for all ¢ € [0,1] and
7 € [0,1] is an identification map.

Determine which of the following subsets of R? are compact:—
(i) the x-axis {(z,y,2) € R®: y = z = 0};

(ii) the surface of a tetrahedron in R3;

(iii) {(x,y,2) ER®: 2 >0 and 22 4+ y* — 22 < 1}.

Let X be a topological space. Suppose that X = AU B, where A and
B are path-connected subsets of X and AN B is non-empty. Show that
X is path-connected.

Let f: X — Y be a continuous map between topological spaces X and
Y. Suppose that X is path-connected. Prove that the image f(X) of
the map f is also path-connected.

Let X and Y be path-connected topological spaces. Explain why the
Cartesian product X x Y of X and Y is path-connected.

Determine the connected components of the following subsets of R?:

(i) {(z,y) eR*: 2 +y? =1},
(ii) {(z,y) € R?: 2% —y* =1},
(iii) {(x,y) € R? 1 y? = z(2* — 1)},
(iv) {(z,y) eR*: (z —n)* + 4> > }l for all n € Z}.

[Fully justify your answers.|

A topological space X is said to be locally path-connected if, given any
point x of X there exists a path-connected open set U in X such that
zel.

(a) Let X be a locally path-connected topological space, and let p be
a point of X. Let A be the set of all points x of X for which there
exists a path from p to z, and let B be the complement of A in
X. Prove that A and B are open in X.

4



(b) Use the result of (a) to show that any connected and locally path-
connected topological space is path-connected.
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1. (a) Let V be the real vector space consisting of all continuous func-
1

tions from [—1,1] to R, and let || f||; = |f(x)|dx for all f e V.
-1

Prove that ||.||; is a norm on V.

(b) Prove that V, with the norm ||.||; defined above, is not a Banach
space. [Hint: consider the infinite sequence fi, fa, f3,... in V,

where
-1 if -1 <2< -1/y;

filz)=q jo if =1/j <a<1/j;
I ifl/j<z<1]

2. Let X be a Banach space, and let S be an invertible bounded linear
operator on X (i.e., a bounded linear transformation from X to itself
which is has a bounded inverse S7!.) Prove that if T' is a bounded
linear operator on X satisfying ||7°— S|| < ||S7!|| then T is invertible.
(Note that this implies that the set of invertible operators is open in
the space B(X) of bounded linear operators on X.)
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. What is the winding number about zero of the closed curve 7;: [0, 1] —
C, where 7, (t) = 2 cos 6mt — e!" ' sin 8t + (3sin 67t + e’ ~* cos 87t)i?

. Show that if a closed curve 7 in the complex plane does not intersect
the negative real axis {t € R : ¢ < 0} then n(v,0) = 0.

. Let 71:[0,1] — C and 7:[0,1] — C be closed curves in the complex
plane that do not pass through zero, and let 7: [0, 1] — C be the closed
curve given by 7(t) = 71 (t)y2(t) for all ¢ € [0,1]. Prove that n(n,0) =
n(m,0) +n(y,0).

. Let 71:10,1] — C and 7,:[0,1] — C be closed curves in the complex
plane satisfying v, (0) = 71 (1) = 72(0) = 72(1) that do not pass through
some complex number w. The concatenation ~y,.7,:[0,1] — C of 7, and
v is defined by the formula

)

=N

t
t
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(2t if 0 <
(y1:72)(t) = { zQEQt)_ 1) ifi<

o= O

Prove that n(v;.ye, w) = n(y, w) + n(y2, w).

. Let 7p:[0,1] — C and 7:[0,1] — C be closed curves in the complex
plane that do not pass through some complex number w. Suppose
that n(vp, w) = n(y1,w). Prove that there exists a continuous function
F:[0,1] x [0,1] — C\ {w} such that F(¢,0) = y(t) and F(t,1) = 7(t)
for all ¢ € [0,1] and F(0,7) = F/(1,7) for all 7 € [0,1]. [Hint: define F
in terms of lifts 59 and 47 of 79 and 71, where exp(5o(t)) = Yo(t) — w
and exp(71(t)) = 71 (t) — w for all ¢t € [0,1].]

(Note that for each 7 € [0,1], the function ¢ — F(t,7) is a closed
curve that does not pass through w. The result of this question is thus

the converse of the result that winding numbers are preserved under
continuous deformations.)



